
The degree of normality in a database is inversely proportional to that of its
DBA.

unknown

9
Database

9.1 Introduction

As already said: php is a stateless scripting language. A php script runs for a very short time
and if it is finished, it clears its memory.

There are some possibilities to store data client-side (cookies) or server side (sessions), but these
are meant for small pieces of data which your application doesn’t rely on. Your application will
be able to create these sessions and cookies.

So what about login-credentials, or content-items like posts of pages? You can store them in
textfiles but this is very hard if you want to read a selection or edit them easily or even sort
them.

Databases are a common used solution for the problem of storage of information. php comes
loaded with a lot of drivers and functions to use when it comes to database connectivity.

66

9.2 Database abstraction

9.2 Database abstraction

Instead of starting with a list of database functions, it is worthy to have a look at some common
used design principle: make an abstraction.

The reason for this, is that your application shouldn’t bother about what database management
system (MySQL, postgreSQL, SQL-server, ...) is behind the server. By making use of an abstraction
layer, your application keeps working, even if you port it to another server, with another DBMS.

Using a full database abstraction layer is beyond the scope of this course. But it is encouraged to
use PDO, php ’s own database-access abstraction layer. Have a look at www.php.net/manual/
en/book.pdo.php for a complete overview. It doesn’t rewrite SQL or emulate missing features,
but still does a pretty good job in connection, executing query’s and fetching results. So the only
thing you need to take care of, is the SQL itself.

9.3 Connecting to the database

For this course, we will use a postgreSQL database.

For every student there should be an extra .db_password.php file in de root folder of your ftp
dir. (It is in the folder above your webroot folder.) This file contains credentials to connect to
your database.

Have a look at https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.phps.
The connection details to connect to the postgresql database are all documented in the php

source code. https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.php gives
you a live example.

9.4 Selecting data from the database

Once you have your connection, you can reuse it all the time.

Listing 9.1 using $db to select some data

1 <?php
2

3 // query
4 $sql = "SELECT * FROM products";
5

6 // result is the object after executing the select query
7 $result = $db->query($sql);
8

9 // fetchAll will collect all rows from the object
10 // and stores them into an associative array (parameter PDO::FETCH_ASSOC)
11 $data = $result->fetchAll(PDO::FETCH_ASSOC);
12

13 // debug print of your two dimensional, associative array
14 print_r($data);
15

16 ?>

67

www.php.net/manual/en/book.pdo.php
www.php.net/manual/en/book.pdo.php
https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.phps
https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.php

9 Database

Have a look at https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.phps
for more details.

9.5 Modifying data

All modifications happen through the exec() method.

Listing 9.2 using $db to select some data

1 <?php
2

3 // query
4 $sql = "
5 INSERT INTO
6 products_123456 (name, price, quantity)
7 VALUES ('some rare things', 3.3, 10);
8 ";
9

10 // result is the number of affected rows by the sql command
11 $result = $db->exec($sql);
12

13 // debug print of the number of affected rows
14 echo $result;
15

16 // query
17 $sql = "
18 UPDATE products_123456
19 SET quantity = 13
20 WHERE name = 'some rare things';
21 ";
22

23 // result is the number of affected rows by the sql command
24 $result = $db->exec($sql);
25

26 // debug print of the number of affected rows
27 echo $result;
28

29 ?>

If you want to have your own script, you need your own database.

Don’t forget to give the correct grants to your local user! (The script should do this for you, but
if you make your own tables ...)

Try to log everything: an error message is the first step in solving a problem.

68

https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.phps

9.5 Modifying data

Exercise 9.1 - connecting to a database and doing some modifications

• Change the port number to 51213.

• Use pgAdmin to connect to the database of your class (e.g. 2TX34)

• Copy the code from https://dynweb.webontwerp.khleuven.be/dynweb/
examples/ex9.1.phps. Make sure you have got the include file as well. Change
the database name and try to connect to your database. There should be a table
products in every database.

• Now go to https://dynweb.webontwerp.khleuven.be/dynweb/examples/
ex9.2.1.php, get the DDL code generated for your studentnr. Connect via
pgAdmin to your class-database and execute the code to create your own
schema and table.

• Change/create your script so that it connects to your own database schema and
table.

69

https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.phps
https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.1.phps
https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.2.1.php
https://dynweb.webontwerp.khleuven.be/dynweb/examples/ex9.2.1.php

9 Database

9.6 Preventing SQL injection

Have a look at this example (or google for ’sql injection’):

Listing 9.3 database transactions vulnerable to sql injection

1 <?php
2

3 // query
4 $sql = "
5 SELECT password
6 FROM users
7 WHERE username = '" . $_GET['username'] . "';
8 ";
9

10 // result is the first column of the first row
11 $result = $db->query($sql);
12 $value = $result->fetchColumn();
13

14 if ($value == sha1($_GET['password'])) { // password hashes, remember?
15 echo 'your are logged in';
16 }
17

18 ?>

It looks fine, but what happens when a user enters ’ OR 1=1-? The executed query will
be something like: SELECT password FROM users WHERE username = ” OR 1=1-- which
means: every user. The first row will perhaps be that of an administrator.

And this is just the beginning ;-)

There are sollutions, PDO offers you one: statement preparing. The principle is simple: you use
placeholders for the values in your sql-command.

• Use a : followed by a choosen key for each variable.

• Use this in your sql-statement.

• Run the sql-statement through the prepare() method

• bind every sql-parameter to a php variable using the bindParam() method. In this method
you can specify the expected datatype.

• Execute your statement

• Fetch whatever you want from the statement

70

9.6 Preventing SQL injection

Listing 9.4 pdo and prepared statements to prevent sql-injection

1 <?php
2

3 // query with a sql-parameter
4 $sql = "
5 SELECT password
6 FROM users
7 WHERE username = :user_name;
8 ";
9

10 // a database statement with the prepared statement
11 $stmt = $db->prepare($sql);
12

13 // binding a php variable to the sql-parameter, it should be a string
14 // with maximum of 15 characters
15 $stmt->bindParam(':user_name', $_GET['username'], PDO::PARAM_STR, 15);
16

17 // execute the statement
18 $stmt->execute();
19

20 $value = $stmt->fetchColumn();
21

22 if ($value == sha1($_GET['password'])) {
23 echo 'your are logged in';
24 }
25

26 ?>

If you apply this to all parameters in any query (SELECT, INSERT, UPDATE, DELETE, ...), this
should prevent most SQL-injection.

Exercise 9.2 - writing some queries

• Display how many items of the product Dana Winner CD there are in stock (off
course by writing a query and getting this information from the DB). Have a
look at a working version at
https://dynweb.webontwerp.khleuven.be/exercises/9.2.1.php.

• Make a form where you can give a product name and which returns the price
and the number of items still in stock of this product. If the product those not
exist, you give an error to the user. Have a look at a working version at
https://dynweb.webontwerp.khleuven.be/exercises/9.2.2.php.
Make sure you use prepared statements.

• Make a form where you can update the stock for a particular product. If the
product those not exist, you give an error to the user.
Have a look at a working version at
https://dynweb.webontwerp.khleuven.be/exercises/9.2.3.php.
Make sure you use prepared statements.

71

https://dynweb.webontwerp.khleuven.be/exercises/9.2.1.php
https://dynweb.webontwerp.khleuven.be/exercises/9.2.2.php
https://dynweb.webontwerp.khleuven.be/exercises/9.2.3.php

	Database
	Introduction
	Database abstraction
	Connecting to the database
	Selecting data from the database
	Modifying data
	Preventing SQL injection

